If you live anywhere other than the southwestern part of the US, you probably need latent cooling in the summer. The word latent means hidden. Cooling capacity is required to condenses water on the evaporator coil. This is referred to as latent cooling because there is no temperature change involved, you can’t sense, or measure the heat change using temperature, but cooling capacity is required. Two things help increase latent cooling: long run times and reduced airflow across the evaporator. These increase the percentage of system capacity used for latent cooling.
I have a brand new communicating, 20 SEER system with a variable speed scroll and an ECM indoor blower motor. One fun thing about the thermostat is that it reports the compressor speed and the furnace reports the blower CFM. I have been watching both.
The compressor is most often operating less than 50% capacity, but stays running most of the day once it starts. This ability to match system capacity to the load makes for long run times, which helps control humidity. It does not use more power, even though it is running a lot because it is using much less electricity while it is operating.
I have noticed that the fan almost never runs at the traditional 400 CFM per ton. For example, on one occasion I found the compressor running at 96% while the fan was moving 1230 CFM. It is a 4 ton system, so traditional CFM math would place the “normal” airflow at 1536 (4 x 0.96 x 400 = 1536). However, the system was operating at only 320 CFM per ton ( 1230 / (4 x 0.96)).
The thermostat also lets you set the indoor relative humidity and reports the indoor relative humidity. I set it at a fairly low 45% and the system has kept it between 45% and 50%. During the day when the system is running, it keeps it right at 45%. It accomplishes this by using long run times at reduced capacity with lower than normal airflow. Summer comfort in the southeast involves more than controlling temperature, it also involves controlling humidity. One bonus of the variable capacity systems is that they do a better job of controlling humidity than fixed capacity systems.
Showing posts with label variable speed. Show all posts
Showing posts with label variable speed. Show all posts
Wednesday, June 7, 2017
Saturday, August 27, 2011
Variable Speed Motors
Electronically commutated motors are widely described as variable speed motors. In truth, most blower motors used in air conditioning are variable speed, including shaded pole and PSC motors. Muliple tap shaded pole and PSC motors are designed specifically to vary their speed based on the tap that is powered. All induction motors vary their speed depending on the load. An increase in load will result in decreased motor speed. What makes ECM motors unique is their ability to vary their speed intelligently in response to the load. They are often used to vary motor speed to maintain constant airflow. To do this, the motors are programmed to match the performance of the blower on which they are mounted. When the airflow through the blower is restricted, the motor responds by speeding up enough to keep the blower CFM the same. In truth, a common PSC blower motor also speeds up when the air through the blower is restricted. However, it does not speed up enough to offset the loss of airflow caused by the restriction, so the airflow decreases. The PSC motor is just responding the way any induction motor does to a decreased load. On a blower with a PSC motor, an airflow restriction causes a decrease in airflow and in motor amp draw because it is not under as much load. A blower with a constant CFM electronically commutated motor will still move the same amount of air by increasing the speed enough to overcome the restriction. Because the motor is doing more work, the amp draw will increase. This is why good duct design and clean filters are important to ECM equipment. The blower motor on a new system with an ECM motor may actually draw a higher amp draw than the old PSC blower it replaced if it is connected to a restrictive duct system. The popular X13 motors by Genteq are constant torque ECM motors. They vary their speed to maintain a steady torque output. When the blower airflow is restricted, the X13 ramps up its speed to maintain the same torque output. This will usually not be enough to completely overcome the restriction, but it will not be producing less torque when the system needs more torque, as is the case with a PC blower. Airflow still drops off, but not as much as with a PSC blower motor. A few systems use an external pulse width modulated signal to the motor to create a feedback loop that maintains an external measured system condition, such as static pressure in a duct system.
Labels:
ECM,
Fundamentals of HVAC/R,
variable speed
Subscribe to:
Posts (Atom)