Showing posts with label EER. Show all posts
Showing posts with label EER. Show all posts

Thursday, July 12, 2018

Air Conditioning Energy Ratings


BTUh, kWh, EER, CEER, SEER, SACC – when it comes to understanding air conditioner capacity and efficiency there are certainly plenty of arcane acronyms to sort through. The systems set up to allow objective comparison of air conditioners are hindering that very goal because of the many different measurement systems and terminology. Before discussing the different terms I would like to quickly explain what an air conditioner does: it pumps out heat. Much like a sump pump pumps out water from a basement or crawl pace, an air conditioner pumps heat out of your house. You need a sump pump that can pump water out as fast as it leaks in, or your basement will flood. With air conditioning, you need one that can pump heat out of your house faster than it leaks in, or your house will still get hot. The key point is that the air conditioner moves heat. In the United States we measure heat in British Thermal Units, or BTUs. The rate at which in air conditioner is able to pump out heat is given in BTUs per hour, or BTUh. This tells us how many BTUs of heat the unit can remove operating for an hour. The air conditioner’s electrical use is measured in kilowatts hours, or kWh.

EER Energy Efficiency Ratio
The EER is the easiest measure to understand. It is the cooling capacity in BTUh divided by the energy use in kWh. It tells you how many BTU of heat removal (cooling) you get for each kWh of energy. However, there are some things not taken into consideration. First is that it is a steady state test, meaning the unit is up and operating at full efficiency before any measurements are taken. No consideration is given for the energy used at startup, shut down, and while plugged in but not running. Also, all measurements are done at design condition, which is 80°F, 50% rh inside and 95°F outside.
   
SEER Seasonal Energy Efficiency Ratio
The Department of Energy devised this measurement for rating central air conditioning units in 1978 to address some of the issues not addressed by EER. Namely, cycling losses and operation at more than one temperature. The idea is that SEER is supposed to show the BTUh/kWh over a season, not just at one steady state condition. To simulate seasonal operation, SEER testing includes cycling and operation at  three different test conditions: 80°db/67°wb inside and 95° outside, 80° db/67°wb inside and 82° outside, and 80°db 57°wb inside and 67° outside. A unit’s SEER is generally higher than its EER because the SEER includes operation at milder conditions. Currently, the minimum SEER in the northern half of the US is 13 while the minimum SEER in the southern half of the US is 14.

CEER Combined Energy Efficiency Ratio
The DOE devised CEER in 2014 specifically for window air conditioning units. CEER is similar to SEER in that it measures efficiency at two operating conditions: 95° and 83°. It also includes the energy used while the unit is plugged in but not operating. A unit’s EER and CEER normally end up being very close to each other with the CEER being slightly lower.

SACC Seasonally Adjusted Cooling Capacity
The SACC was devised in 2017 to measure the efficiency of portable air conditioners. By portable, they mean the ones on wheels where the whole unit sits in the room and an exhaust duct is placed in the window to carry hot condenser air out. It is similar to the CEER in that it measures capacity at both  95° and 83°. It also includes adjustments for heat gains (cooling losses) from the exhaust duct plus loses due to infiltration caused by having to stick the exhaust duct out the window.

How do you convert between these different methods? You don’t because they each have different testing specifications. There are some formulas offered, but they can’t determine the differences in how different units will respond at the varying testing conditions.  The best you can do is understand each rating and use them to compare units with similar ratings. Just as the EPA mileage estimates don’t really tell you what your mileage will be with that new car you just bought, these ratings will not really tell you the energy use for your new air conditioner for a year. So which rating system do I believe is the most reliable? Honestly, the simplest and oldest one: EER.

Thursday, January 8, 2015

New Regional Efficiency Standards Take Effect

In case you missed it, there are now new minimum efficiency standards for residential air conditioning equipment. As of January 1, 2015 the long discussed regional air conditioning standards went into effect. They are called regional standards because the minimum legal efficiency of the equipment is determined by the region of the country in which it will be installed. For Northern states, nothing changes – the minimum stays at 13 SEER. For the southeast, the minimum is increased to 14 SEER.  For the southwest, the minimum is a bit more complicated. The SEER rises to 14, but minimum EERs are also introduced. The minimum EER for the Southwest is 12.2 for systems less than 45,000 Btuh and 11.7 for systems 45,000 Btuh and greater. So a 13 SEER system that is legal in Indiana is illegal in Kentucky. A 14 SEER system that is legal in Texas might not be in Arizona, depending on its EER. Although the minimum efficiencies are already in effect, the enforcement mechanism has yet to be determined.

It is interesting to note that it is possible for a unit to have a higher SEER than another unit, but for the lower SEER unit to have a higher EER. That is the reason for the dual SEER/EER conditions.
Rheem has a good page with a map and a table explaining the new standards

There is a very informative presentation on the California Energy Commision’s web site by Steve Kavanaugh explaining the reasoning behind using both SEER and EER for minimum efficiency standards.