Thursday, January 15, 2015

Perfect Weather for Defrost Problems

WE are experiencing  lot of cold, rainy days here in Georgia. The temperatures hover just above freezing into the mid 40's. This type of weather is perfect weather for heat pump defrost problems. Heat pumps have to defrost more in weather just above freezing than in much colder weather. If the temperature is so cold that water freezes out of the air, there won’t be much water in the air. If there is not a lot of water in the air, heat pump will not develop very much frost. On the other hand, if the temperature is 40 degrees and raining, there is a lot of water available. The coil in the heat pump will be below freezing even when it is 40 degrees outside, so the water will form frost on the coil. The system is more likely to need frequent defrosting at temperatures just above freezing than at much colder temperatures.  This is not to say heat pumps won’t got into a defrost cycle at very cold temperatures, but there is much less ice to defrost. The first thing to check on an iced over heat pump would be to make sure the outdoor fan motor is operating. If the outdoor fan motor is not moving air across the coil, it will frost very quickly in cold, wet conditions. The normal defrost periods would not be able to keep the coil clear. An undercharge can also make a system freeze up faster and keep it from clearing the ice when it does go into defrost. If water created when the coil is defrosted cannot drain away from the unit, a large ice floe can build up underneath the unit. This can create an ice chunk around the bottom of the unit. Heat pump condensers should be elevated enough to allow the water to drain. Sometimes the defrost thermostat just clips onto the coil. Occasionally they become loose and cannot sense the coil temperature, so they will not initiate a defrost cycle in weather that is above freezing. To check a defrost thermostat, just ohm it out. Generally, the defrost thermostat should close when it senses a temperature cold enough to initiate a defrost cycle. This can be checked by disconnecting the defrost thermostat from the circuit and ohming it out. If it is in the correct location, making good contact, and the coil is iced over, the defrost thermostat should be closed (0 ohms). If it is open (OL) it is bad. A thermistor defrost sensor is also checked by resistance, but these typically change resistance with temperature rather than opening and closing like a switch. You have to check the measured resistance against the manufacturer’s specs. Usually, these fail open, so if you have a measurable resistance, the defrost sensor is probably OK. Most defrost boards today have s test function. Jumping across the test pins accelerates time. If the defrost thermostat is closed, jump the test pins. If the board is good, it should initiate a defrost cycle. Do't automatically assume that the problem is a bad defrost board.Changing the board won't help if the problem is caused by one of the other causes.

No comments:

Post a Comment