Saturday, July 15, 2017

Flammable Refrigernats

I confess that I have always thought of flammability as an either or question: it either burns or it doesn’t. So the concept of different levels of flammability was a hard one for me to grasp. I wondered: what is the difference between 3,2, and 2L refrigerant designations? What follows is a somewhat lengthy discussion of what I learned.

First off,  found that it is not all that simple. There are several flammability characteristics that can be compared: lower flammability limit, upper flammability limit, auto ignition temperature, minimum ignition energy, heat of combustion, and flame velocity. The table at the bottom of the article shows these different specifications for a small selection of flammable refrigerants. Note that pressure and temperature also play a part. For the ASHRAE safety tests, a temperature of 140°F at atmospheric pressure is specified. You get different results when applying higher pressures and temperatures.

The original three classifications (1,2,3) were determined by the lower flammability limit and the heat of combustion. A refrigerant is classified as highly flammable, Class 3, if  either it requires 3.5% or less less by volume for a flammable mixture or it has a heat of combustion equal to or exceeding 19 kilojoules per gram. Note that EITHER condition will place it in class 3. Class 2 refrigerants require a concentration greater than 3.5% by volume to create a flammable mixture and they must have a heat of combustion less than 19 kilojoules per gram. Note that BOTH conditions must be met in order to be classified as class 2. Later, ASHRAE added a 2L category for refrigerants with burning velocities less than 10 centimeters per second. The table below summarizes the different flammability classifications.

Lower Flammability Limit % by volume
Heat of Combustion
Burning Velocity
Does not support combustion at atmospheric pressure
Greater than 3.5%
Less than 19 kj/g
10 cm/s or less
Greater than 3.5%
Less than 19 kj/g
Greater than 10 cm/s
3.5% or less
19 kj/g or more

Lower flammability limit (LFL) is the minimum percentage required in air to be combustible. For example propane (R290) has an LFL of 2.1% by volume while ammonia (R717) has an LFL of 15%. Notice that propane only requires 2.1% while ammonia requires 15%. So that is one difference – the amount that must build up before it can burn.

Upper flammability limit (UFL) describes the maximum concentration which will still burn. If the concentration of flammable vapors exceeds the UFL, it will not ignite. It is more difficult to draw a straight line comparison using the UFL. However, you can say that refrigerants whose LFL and UFL are closer together are generally a bit safer simply because the conditions dor a flammable mixture are less likely to occur.

Auto ignition temperature is the lowest temperature at which it spontaneously ignites in normal atmosphere without an external source of ignition. With the exception of 1234yf, the lower flammability refrigerants have higher auto ignition temperatures than the more flammable refrigerants.

Minimum ignition energy is a bit different than the auto ignition temperature. It is the minimum amount of energy required to ignite a flammable mixture, measured in megajoules. Note that in this case R1234yf stands out because the minimum ignition energy is so high compared to the other refrigerants. Also note that the class 2L refrigerants all have minimum ignition energy ratings in the hundreds of megajoules or higher while propane’s minimum ignition energy is a very small 0.25 megajoules. Basically, this means it takes a lot more energy to ignite the 2L refrigerants than a highly flammable refrigerant such as propane. Again, this means that the chance of having the right condition for combustion is much lower for class 2L refrigerants.

Heat of combustion is a measure of the amount of heat created when the refrigerant burns. Note that the class 2L and class 2 refrigerants have a heat of combustion in the single digits per gram while propane jumps to 46 kilojoules per gram. This means that the heat produced by combustion of a class 2L or class 2 refrigerant is far less than a class 3 refrigerant. Indeed, it would be possible for a class 2L refrigerant to burn and not ignite other nearby flammable materials.

Burning velocity is the characteristic which distinguishes 2 and 2L refrigerants. It is the speed with which the flame advances. Note that the 2L class refrigerants have a burning velocity in the single digits while 152a, a class 2 refrigerant, has a BV of 23 cm/sec. Propane’s burning velocity is twice that of 152a. The take home point here is that the flames from higher flammability refrigerants spread faster.

So wrapping it up, my general impression is that lower flammability refrigerants are less likely to burn in the first place and when they do burn, the flames are not as hot and do not spread as quickly as a high flammability refrigerant such as propane.
717 Ammonia
290 Propane
Safety Group
Lower Flammability LImit
Upper Flammability Limit
Auto Ignition Temperature
Minimum Ignition Energy
5,000 – 10,000 mJ
30 – 100 mJ
100 – 300 mJ
0.38 mJ
0.25 mJ
Heat of Combustion
9.5 kJ/g
9 kJ/g
22.5 kJ/g
6.3 kJ/g
46.3 kj/g
Burning Velocity
1.5 cm/sec
6.7 cm/sec
7.2 cm/sec
23 cm/sec
46 cm/sec

No comments:

Post a Comment